

6-HYDROXYANTHOCYANIDIN GLYCOSIDES IN THE FLOWERS OF *ALSTROEMERIA*

NORIO SAITO, MASATO YOKOI,* MINA OGAWA,* MASAAKI KAMIJO* and TOSHIO HONDA†

Chemical Laboratory, Meiji-Gakuin University, Totsuka, Yokohama, Japan, *Department of Horticulture, Chiba University, Matsudo, Japan, †Hoshi College of Pharmacy, Shinagawa, Tokyo, Japan

(Received 24 June 1987)

Key Word Index—*Alstroemeria*, Alstroemeriaceae, flower colour, anthocyanins, 6-hydroxycyanidin 3-rutinoside, 6-hydroxydelphinidin 3-rutinoside, cyanidin 3-rutinoside, delphinidin 3-rutinoside.

Abstract—Two 6-hydroxyanthocyanidin glycosides and two common anthocyanidin glycosides are present in the coloured petals of *Alstroemeria* species and cultivars. 6-Hydroxycyanidin 3-rutinoside is particularly abundant in the orange, red and pink flowers of *A. aurantiaca*, *A. pulchellia*, *A. ligtu* var. *angustifolia* × *A. haemantha* and also 11 cultivars. A novel anthocyanidin glycoside, 6-hydroxydelphinidin 3-rutinoside, occurs only in the pink-purple flowers of five cultivars. Cyanidin 3-rutinoside was observed in all coloured flowers of *Alstroemeria*; delphinidin 3-rutinoside was restricted to pink and purple flowers of 10 cultivars, and also in one species, *A. violacea*.

INTRODUCTION

Recently we found a new anthocyanidin, 6-hydroxycyanidin, in the red flowers of *Alstroemeria* cultivars [1]. For further study of anthocyanin occurrence in *Alstroemeria*, four species, one specific hybrid and 16 cultivars were analysed. As a result another novel anthocyanidin, 6-hydroxydelphinidin, was found to co-occur with 6-hydroxycyanidin, delphinidin and cyanidin glycosides.

RESULTS AND DISCUSSION

The major anthocyanins of the plants investigated (Table 1) are the 3-rutinosides of cyanidin, delphinidin and 6-hydroxycyanidin. A small amount of a further cyanidin glycoside was also observed but its structure could not be determined (Table 1). Another novel 6-hydroxyanthocyanidin glycoside was found in the pink purple flowers of five cultivars 'Jubilee', 'Patricia', 'Rosello', 'Rita', and 'Zeranon', as a minor component and was identified as 6-hydroxydelphinidin 3-rutinoside.

The new pigment, after purification by TLC (solvents, BAW and Bu-HCl), gave a small shift on the addition of aluminium trichloride showing the presence of free *ortho*-dihydroxyls in the B-ring (see Table 2). On acid hydrolysis, it gave an aglycone, glucose and rhamnose. Partial acid hydrolysis gave rise to one intermediate, 6-hydroxydelphinidin 3-glucoside. Rutinose was obtained by the hydrogen peroxide degradation of this pigment. From these data this pigment was determined to be a 3-rutinoside of a new anthocyanidin. From the R_f data of PC and TLC, this new anthocyanidin appeared to contain seven hydroxyl groups. The λ_{max} of this aglycone were 280 and 530 nm in 0.1% HCl-MeOH, the latter wavelength being 17 nm shorter than that of delphinidin (547 nm). A similar hypsochromic shift of λ_{max} was also observed between 6-hydroxycyanidin and cyanidin ($\Delta\lambda = -18$ nm), as

shown in Table 2) [1-3]. From these data, this aglycone was presumed to be 6-hydroxydelphinidin (^1H NMR (Table 3) and mass spectroscopic measurements for the pigment and related anthocyanins were fully in agreement with this structural assignment. Furthermore, FAB-MS established the molecular ion peak at m/z 627, supporting the molecular formula as $\text{C}_{27}\text{H}_{31}\text{O}_{17}^+$. This is the first report of a 6-hydroxydelphinidin glycoside occurring in the plant world.

The other three anthocyanins, cyanidin 3-rutinoside, delphinidin 3-rutinoside and 6-hydroxycyanidin 3-rutinoside, were isolated and identified by standard procedures (Table 1) [1, 4, 5]. These structures were confirmed by analyses of ^1H NMR and FAB mass spectra (Table 3).

The 16 cultivars of *Alstroemeria* can be grouped into three, according to the anthocyanin types present. The first group is composed of cyanidin and 6-hydroxycyanidin. Anthocyanidins of the second group are cyanidin and delphinidin, and the colour of these plants are crimson pink. The last group has four anthocyanidins, cyanidin, delphinidin, 6-hydroxycyanidin and 6-hydroxydelphinidin, and the colour of this group is pink-purple.

EXPERIMENTAL

Fresh petals of four species of *Alstroemeria*, *A. violacea*, *A. pelegrina rosea*, *A. aurantiaca*, *A. pulchellia*, and one specific hybrid (*ligtu* hybrid; *A. ligtu* var. *angustifolia* × *A. haemantha*) were collected from Miyake Nursery, Mabora, Chiba in May. Also fresh petals of 16 cultivars of *Alstroemeria* (Table 1) were collected from Fukkai Seeds Co., Mie, and Seiwa Nursery, Mabora, Chiba. These petals were extracted with 0.1% HCl-MeOH at room temp for 20 hr. The extract was concentrated to small vols. The concentrated extract was separated by TLC (cellulose, *n*-BuOH-AcOH-H₂O, 4:1:5, AcOH-HCl-H₂O, 15:3:82), and

Table 1 Distribution of anthocyanins in flower extracts of *Alstroemeria*

Species and cultivars	Dp	6HDp	Cy	6HCy	Cyx	Flower colour
<i>Alstroemeria violacea</i>	+		+			bright lilac
<i>A. pelegrina rosea</i>			++		+	deeper red
<i>A. aurantiaca</i>			++	++		golden-yellow
<i>A. pulchellia</i>			++	++		dark red
<i>A. ligu var angustifolia</i> ×						
<i>A. haemantha</i> (ligu hybrids)			+	+		pale pink
Jubilee	+++	++	+++	+	±	pink-purple
Patricia	++	++	++	++	±	
Rosello	++	++	+++	++	±	
Rita	++	+	+++	++	±	
Zeranon	+++	++	+++	++	±	crimson-pink
Luciana	+++		+++		++	
Pascal	+++		+++		+	
Tango	+++		+++		++	
Regina	+++		+++		±	orange-red
Mona Lisa	++		+++		±	
King Cardinal			+++	++	±	
Apple Blossom			+++	++	±	
Atlas			+++	++	±	ivory
Rosita			++	++	±	
Campfire			++	++	+	
Yellow King			++	++		

Key Dp delphinidin 3-rutinoside, 6HDp 6-hydroxydelphinidin 3-rutinoside, Cy cyanidin 3-rutinoside, 6HCy 6-hydroxycyanidin 3-rutinoside, Cyx cyanidin glycoside. Visual rating of anthocyanins in concentration on TLC: ++ high, + intermediate, + low, ± trace.

Table 2 R_f values, spectral properties and colour of 6-hydroxyanthocyanidin glycosides and related pigments

Pigment	Visible colour	R_f values ($\times 100$)*						Spectral data in		
		Forestal	Formic	BAW	BuHCl	1% HCl	AcOHCl	MeOH-HCl	$AlCl_3$	E_{440}/E_{max}
Cyanidin	magenta	43	18	47				273 536	+	20
6-Hydroxycyanidin	red	25	11	28				282 518	+	22
Delphinidin	purple	24	10	29				277 547	+	18
6-Hydroxydelphinidin	pink-purple	11	5	10				280 530	+	17
6-Hydroxydelphinidin										
3-rutinoside	pink-purple			3	4	4	19	280 525	+	16
Delphinidin										
3-rutinoside	purple			20	23	11	35	277 542	+	16
6-Hydroxycyanidin										
3-rutinoside	red			15	16	11	35	283 514	+	20
Cyanidin 3-rutinoside	magenta			28	37	17	45	281 530	+	20

*Solvent key Forestal, acetic acid-HCl-H₂O (30 3 10), Formic, formic acid-HCl-H₂O (5 2 3), BAW, *n*-butanol-acetic acid-H₂O (4 1 5), BuHCl, *n*-butanol-2N HCl (1 1), AcOHCl, acetic acid-HCl-H₂O (15 3 82)

10 mg of 6-hydroxydelphinidin 3-rutinoside was obtained from the extracts of a pink-purple cultivar 'Jubilee' (fresh petals 1.0 kg). 20 mg of cyanidin 3-rutinoside, 20 mg of delphinidin 3-rutinoside and small amounts of 6-hydroxycyanidin 3-rutinoside were obtained from the combined extracts of 16 cultivars (fresh petals ca 500 g).

For the further study of the native pigments of *Alstroemeria*, the pigments were extracted with the methanol-acetic acid-water solvent in accordance with the procedure of ref [6]. However, we could not observe any acylated anthocyanins in

the extracts. Therefore, the native pigments are identical with the ones extracted with the methanolic HCl solvent.

The absorption spectra and R_f values of these anthocyanins were compared by standard methods with authentic specimens of cyanidin 3-rutinoside, delphinidin 3-rutinoside and 6-hydroxycyanidin 3-rutinoside [2, 5].

Acknowledgements — We thank Mr S Miyake, Miyake Nursery, Mr C Yoshitsugu, Fukkaen Seeds Co., and Mr S Saito, Seiwa Nursery for their gift of the plant materials. We also thank Dr T

Table 3 ^1H NMR and FAB-MS analyses of *Alstroemeria* anthocyanins using DMSO-d₆ with DCl (chemical shifts in ppm from TMS)

	Delphinidin 3-rutinoside	6-Hydroxydelphinidin 3-rutinoside	Cyanidin 3-rutinoside	6-Hydroxycyanidin 3-rutinoside*
H-4	8.72 (br s)	8.85 (br s)	8.81 (br s)	8.94 (br s)
H-6	6.78 (<i>J</i> = 2)	—	6.79 (<i>J</i> = 2)	—
H-8	6.86 (<i>J</i> = 2)	7.19 (br s)	6.90 (<i>J</i> = 2)	7.19 (br s)
H-2'	7.73 † (br s)	7.71† (br s)	7.98 (<i>J</i> = 2)	8.04 (<i>J</i> = 2)
H-5'	—	—	7.02 (<i>J</i> = 8.5)	7.04 (<i>J</i> = 8.5)
H-6'	—	—	8.22 (<i>J</i> = 2, 8.5)	8.20 (<i>J</i> = 2, 8.5)
Anomeric H glucose	5.36 (<i>J</i> = 7.5)	5.39 (<i>J</i> = 7.5)	5.34 (<i>J</i> = 7.5)	5.39 (<i>J</i> = 7.5)
Anomeric H rhamnose	4.46 (br s)	4.51 (br s)	4.50 (br s)	4.69 (br s)
Rhamnose Me	1.20 (<i>J</i> = 6.5)	1.16 (<i>J</i> = 6.5)	1.25 (<i>J</i> = 6.5)	1.17 (<i>J</i> = 6.5)
FABMS [M ⁺] (<i>m/z</i>)	611	627	596	611

* N Saito *et al* (1985) *Phytochemistry* **24**, 2125

† H-2' and 6'

Ando and Mr Y Ueda of our laboratory (M.Y) for discussion of methods for pigment analysis.

REFERENCES

1. Saito, N, Yokoi, M, Yamaji, M and Honda, T (1985) *Phytochemistry* **24**, 2125
2. Harborne, J. B. (1967) *Comparative Biochemistry of the Flavonoids* Academic Press, London
3. Jurd, L. and Harborne, J. B. (1968) *Phytochemistry* **7**, 1209
4. Saito, N, Yokoi, M, Yamaji, M and Honda, T (1987) *Phytochemistry* **26**, 2761
5. Harborne, J. B. (1973) *Phytochemical Methods* Chapman & Hall, London
6. Harborne, J. B. (1986) *Phytochemistry* **25**, 1887